Econ 133 – Global Inequality and Growth Inequality between labor and capital

Gabriel Zucman zucman@berkeley.edu

What we've learned so far:

- All income derives from labor or capital
- ullet The share of income that goes to capital (α) is equal to the capital/income ratio eta times the rate of return to capital r
- ullet In the long run, eta o s/g where $g = \mathsf{pop.} + \mathsf{demo.}$ growth
- ullet For most of world history g was low, and eta was high
- ullet Some believe g will be low again at global level (pprox 1%-1.5%) by 2100 o eta might become high again

Today we ask:

- ullet If eta rises, does this automatically imply that lpha will rise?
- ullet What are the implications of a high capital share lpha? Why do we care?
- What determines factor shares in the long run? [Factor shares: share of capital in national income α and share of labor in national income $1-\alpha$]
- Reference for this lecture: Piketty and Zucman (2014) Section
 VIII; Piketty's (2014) book, page 215–234

Roadmap

- 1. Factor shares in a Cobb-Douglas world
- 2. Factor shares with CES production
- 3. The role of institutions and bargaining power

1 Factor shares in a Cobb-Douglas world

1.1 Definition of factor shares

- Capital income = all income flows going to capital owners (independently of any labor input)
- Labor income = all income flows going to labor earners (independently of any K input)
- Caveat: In practice, frontier between capital and labor can be hard to draw

1.2 The Cobb-Douglas production function

- Cobb-Douglas production function: $Y = F(K, L) = K^{\alpha}L^{1-\alpha}$
- With perfect competition, wage rate v = marginal product of labor, rate of return r = marginal product of capital:

$$r = F_K = \alpha K^{\alpha - 1} L^{1 - \alpha} \quad \text{and} \quad v = F_L = (1 - \alpha) K^{\alpha} L^{-\alpha}$$

- \bullet So capital income $Y_K = rK = \alpha Y$ and labor income $Y_L = vL = (1-\alpha)Y$
- Capital and labor shares are entirely set by technology and do not depend on quantities of capital and labor

1.3 The limits of Cobb-Douglas

- Cobb-Douglas production very popular for a long time
- Writing in the 1920s, Keynes saw stable factor shares; became one of Kaldor's (1957) six stylized facts.

Two problems:

- Recent data show increase in capital share at global level.
 Reference on this: Karabarbounis and Neiman (2014)
- ullet Evidence that lpha was higher in the 19th century than today

Capital shares in factor-price national income 1975-2010

France

2 Factor shares with CES production

2.1 The elasticity of substitution

• The elasticity of substitution σ captures the response of the capital-labor ratio K/L to a change in relative factor prices v/r:

$$\sigma = -\frac{\mathrm{d} log(K/L)}{\mathrm{d} log(F_K/F_L)} = \frac{\mathrm{d} log(K/L)}{\mathrm{d} log(v/r)}$$

• In the Cobb-Douglas case, σ is exactly equal to 1. Proof:

- Ex: if wages rises by 1% relative to r, then firms use 1% less labor relative to K, so that labor share in output remains constant
- ullet However, there is no reason why σ should be equal to 1 (Keynes: "a bit of miracle")

2.2 The CES production function

- In the CES production function, the elasticity of substitution can take any value
- ullet With CES production, factor shares are not necessarily constant o useful to think about real world

• A CES production function is given by:

$$F(K,L) = (a \cdot K^{\frac{\sigma-1}{\sigma}} + (1-a) \cdot L^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$

- $\bullet \ \sigma = {\sf constant} \ {\sf elasticity} \ {\sf of} \ {\sf substitution}$
- As $\sigma \to \infty$, the production function becomes linear: Y = rK + vL. Robot economy
- As $\sigma \to 0$, the production function becomes putty-clay, i.e. F(K,L) = min(rK,vL): no substitution possibility

2.3 Factor shares in a CES world

- The CES function helps think about the rise of the capital share
- ullet Theorem: α is a rising function of β iff $\sigma > 1$
- ullet Remember the accounting identity: $\alpha = r \cdot \beta$
- \bullet σ links the capital/income ratio β and the capital share α : it determines how much the rate of return r falls when β rises

Private wealth / national income ratios 1970-2010

Source: Piketty and Zucman (2014). Authors' computations using country national accounts. Private wealth = non-financial assets + financial assets - financial liabilities (household & non-profit sectors)

Average return on private wealth 1975-2010

Capital shares in factor-price national income 1975-2010

- \bullet σ doesn't have to be much > 1 to account for observed trends
- \bullet If $\sigma=1.5$, capital share rises from $\alpha=28\%$ to $\alpha=36\%$ when β rises from 250% to 500%
- In case β reaches 800%, α would reach 42%
- ullet In case $\sigma{=}1.8$, lpha would be as large as 53%

2.4 What do we know about σ ?

- ullet Micro literature usually finds $\sigma < 1$
- ullet A recent macro literature finds $\sigma>1$. Example: Karabarbounis and Neiman (2014)
- ullet Possible that σ has increased over time: change in the nature of wealth, globalization

3 Change in the market power of capital

- So far we assumed perfect competition: capital and labor are paid their marginal product
- What if capital is paid more (or used to be paid less) than its marginal product?
- Possible channels: decline of unions, globalization, rise of network industries (Facebook, Twitter), change of social norms
- Evidence of change in market power for capital: rise of Tobin's Q

Tobin's Q (i.e. the ratio between market value and book value of corporations) has risen in rich countries since the 1970s-1980s. Sources and series: see piketty.pse.ens.fr/capital21c.

Summary

- \bullet Factor shares are not constant: the capital share α is rising, the labor share $1-\alpha$ falling
- One explanation is that the rise of the capital share of income may be the consequence of the rise of the stock of capital (rising β).
- ullet If capital and labor are relatively substitutable ($\sigma>1$), a rise in the wealth/income ratio eta will trigger a rise in the capital share lpha
- Another explanation is that market power for capital may be rising
- Because K income is v. unequally distributed (more than L income), $\uparrow \alpha$ can have big consequences for interpersonal ineq.

References

Karabarbounis, Lukas and Brent Neiman, "The Global Decline of the Labor Share", *Quarterly Journal of Economics*, 2014 (web)

Piketty, Thomas, Capital in the 21st Century, Cambridge: Harvard University Press, 2014, Chapter 1

Piketty, Thomas, and Gabriel Zucman, "Capital is back: wealth-income ratios in rich countries 1700-2010", Quarterly Journal of Economics, 2014 (web)