Econ 133 – Global Inequality and Growth

What is Capital?

Gabriel Zucman zucman@berkeley.edu

Roadmap

- 1. Capital and wealth: definitions
- 2. The wealth/income ratio in the long-run
- 3. The link between capital income and wealth

1 Capital and wealth: definition

1.1 Private wealth

- \bullet Private wealth $W = {\sf assets} {\sf liabilities}$ of households
- Assets = all non-financial (housing, land...) and financial assets (equities, bonds, bank deposits...)
- Recorded in national balance sheets

1.2 Public wealth

- Public wealth = assets liabilities of the government
- Liabilities = public debt; assets = schools, roads, barracks...

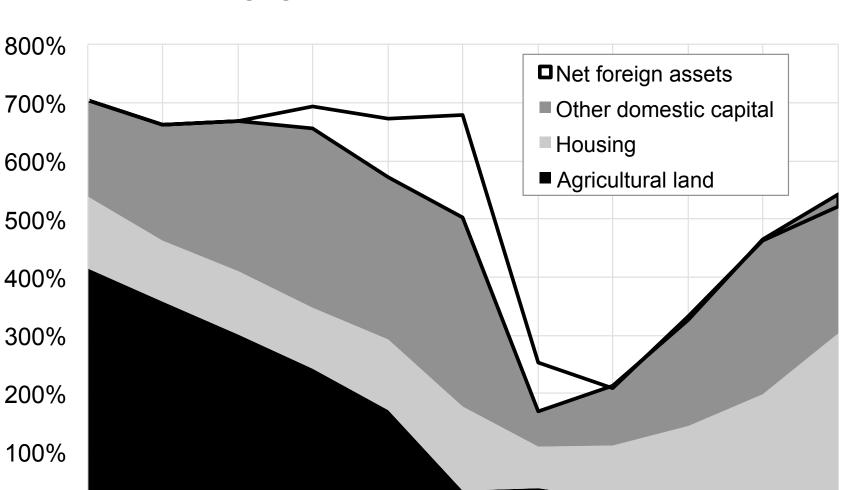
1.3 National wealth

• National wealth = private wealth + public wealth

National wealth can be decomposed as follows:

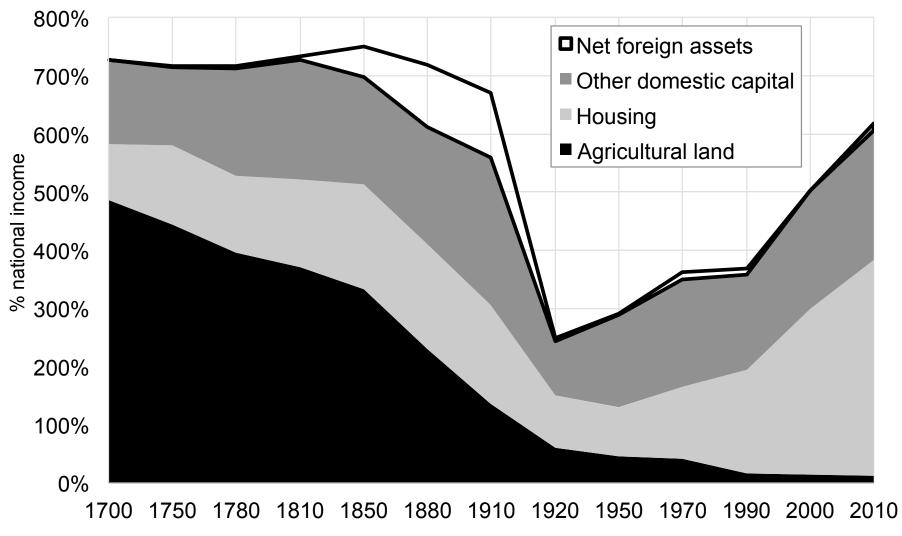
- National wealth = domestic capital K + net foreign assets
- K = domestic capital = land + housing + other domestic capital
- At world level: wealth = capital
- Key reference for data on wealth and its composition: World Inequality Database, http://wid.world

2 The wealth/income ratio in the long run


Object of interest $\beta = W/Y$

2.1 Data sources

- Long tradition of national wealth estimates in Britain and France in 18th-19th centuries
- Not sufficiently precise to study short-run fluctuations; but fine to study broad orders of magnitudes and long-run evolutions


% national income

0%

The changing nature of national wealth: UK 1700-2010

Source: Piketty and Zucman (2014). National wealth = agricultural land + housing + other domestic capital goods + net foreign assets -7 -

The changing nature of national wealth: France 1700-2010

Source: Piketty and Zucman (2014). National wealth = agricultural land + housing + other domestic capital goods + net foreign assets $- \circ$ -

2.2 The long-run wealth-income ratio: $\beta = s/g$

In the long-run, the wealth to income ratio β is equal to the ratio of the saving rate s by the growth rate g

Proof of the formula $\beta=s/g$:

•
$$W_{t+1} = W_t + s_t Y_t$$

• Divide both sides by $Y_{t+1} = Y_t(1 + g_t)$ to get:

$$\beta_{t+1} = \frac{W_t + s_t Y_t}{Y_t (1 + g_t)} = \frac{\beta_t + s_t}{1 + g_t}$$

In steady state:

•
$$\beta_t = \beta_{t+1}$$
, $s_t = s$, $g_t = g$

 \bullet Plug in above equation, solve for $\beta,$ and get $\beta=s/g$

Ex: if
$$s = 10\%$$
 and $g = 3\%$ then $\beta = 333\%$

Ex: If
$$s = 10\%$$
 and $g = 1.5\%$ then $\beta = 666\%$

Only assumption: $W_{t+1} = W_t + s_t Y_t$, i.e., no price effects

Consider an economy where there is no income growth (g = 0%) and people save at a rate of s = 1%. Then:

A — The wealth-income ratio will tend to 100% in the long-run

B — The wealth-income ratio will tend to 0% in the long run

C — The wealth-income ratio will tend to 1% in the long run

D — The wealth-income ratio will tend to infinity in the long run

2.3 Where does *s* come from?

Different reasons why people save:

- Precautionary saving
- Life-cycle saving
- Leaving bequests
- Wherever s comes from, $\beta=s/g$ if no price effect

Gross and net saving in rich countries, 1970-2010				
	Gross private savings (% national income)	Minus: Capital depreciation	Equal: Net private saving	
U.S.	18.8%	11.1%	7.7%	
Japan	33.4%	18.9%	14.6%	
Germany	28.5%	16.2%	12.2%	
France	22.0%	10.9%	11.1%	
U.K.	19.7%	12.3%	7.3%	
Italy	30.1%	15.1%	15.0%	
Canada	24.5%	12.4%	12.1%	
Australia	25.1%	15.2%	9.9%	

A large part of gross saving (generally about half) corresponds to capital depreciation; i.e. it is used solely to repair or replace used capital.

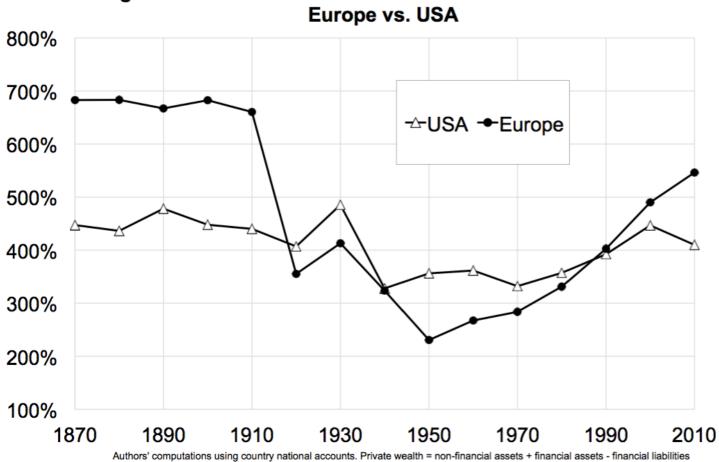
Sources: Piketty and Zucman (2014)

Private and public saving in rich countries, 1970-2010				
	National saving (private + public) (net of depreciation) (% national income)	incl. Private saving	incl. Public saving	
U.S.	5.2%	7.6%	-2.4%	
Japan	14.6%	14.5%	0.1%	
Germany	10.2%	12.2%	-2.0%	
France	9.2%	11.1%	-1.9%	
U.K.	5.3%	7.3%	-2.0%	
Italy	8.5%	15.0%	-6.5%	
Canada	10.1%	12.1%	-2.0%	
Australia	8.9%	9.8%	-0.9%	

A large part (variable across countries) of private saving is absorved by public deficits, so that national saving (private + public) is less than private saving.

Sources: Piketty and Zucman (2014)

2.4 What does the $\beta = s/g$ formula say?


Any β possible in steady-state, as s and g vary for lots of reasons

Countries with low g tend to have high β

Can explain why 18th century economies had high β

Can explain Europe vs. US

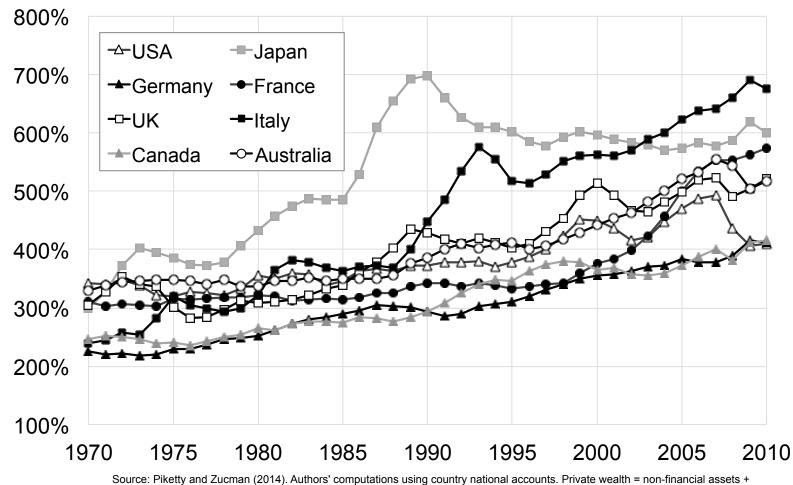
Can explain high Chinese saving rate

Figure 4: Private wealth / national income ratios 1870-2010:

(household & non-profit sectors). Data are decennial averages (1910-1913 averages for Europe)

Gabriel Zucman

2.5 Lessons of $\beta = s/g$ for the 21st century


Population growth will fall $\rightarrow \beta$ might become high at global level

If in addition productivity growth falls, β might become very high

Are high β a good thing or a bad thing?

• Good: capital is useful (e.g., infrastructure, houses, etc).

• Problem: might exacerbate inequality

Private wealth / national income ratios 1970-2010

financial assets - financial liabilities (household & non-profit sectors)

3 The link between capital income and wealth

- Define $r = \text{average rate of return to wealth} = Y_K/W$
- Basic accounting relatinoship: $\alpha = r \times \beta$
- Typical values: β =600%, r =5%, α =30%
- \bullet In practice, average rate of return to capital r varies a lot across assets and over individuals

References

Barro, Robert, "Are government bonds net wealth?", Journal of Political Economy 1974 (web)

Lane, Philip and Gian Maria Milesi-Feretti, "The External Wealth of Nations Mark II," *Journal of International Economics*, 2007, 73 (web)

Piketty, Thomas, and Gabriel Zucman, "Capital is back: wealth-income ratios in rich countries 1700-2010", *Quarterly Journal of Economics*, 2014 (web)

Ricardo, David On the principles of political economy and taxation, 1817

Knoll, Katharina, Moritz Schularick and Thomas Steger (2014). "No Price Like Home: Global House Prices, 1870-2012", CEPR DP. (web)

Piketty, Thomas, and Gabriel Zucman, "Capital is back: wealth-income ratios in rich countries 1700-2010", *Quarterly Journal of Economics*, 2014 (web)