Econ 133 – Global Inequality and Growth Models of the wealth distribution

Gabriel Zucman zucman@berkeley.edu

Roadmap

• The precautionary saving model

• The life-cycle model

• Dynamic random shock models

Key question for the study of wealth inequality: why is wealth much more concentrated than labor income?

 Precautionary saving models: wealth less unequally distributed than income

• Life-cycle saving models: wealth as unequally distributed as labor income

 To generate a higher concentration of wealth, one needs dynamic models with cumulative shocks over long horizons

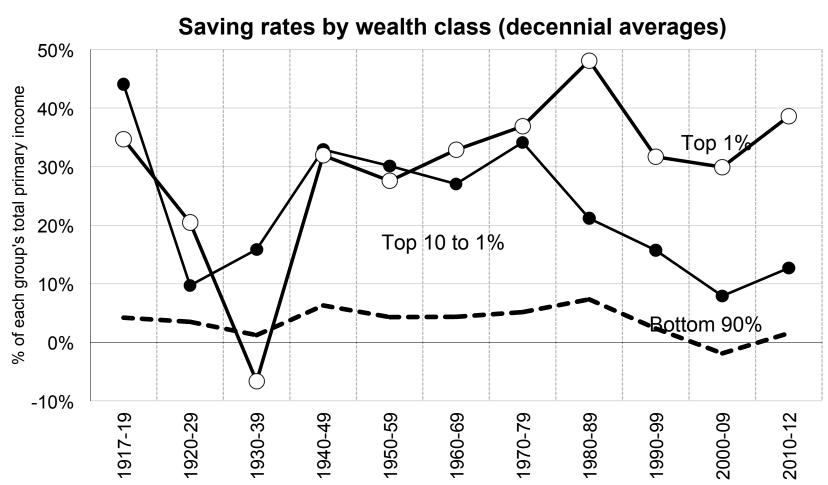
1 Precautionary saving model

ullet Income is uncertain o hold wealth as precaution for "rainy days"

ullet Main uncertainty: job loss o labor income risk

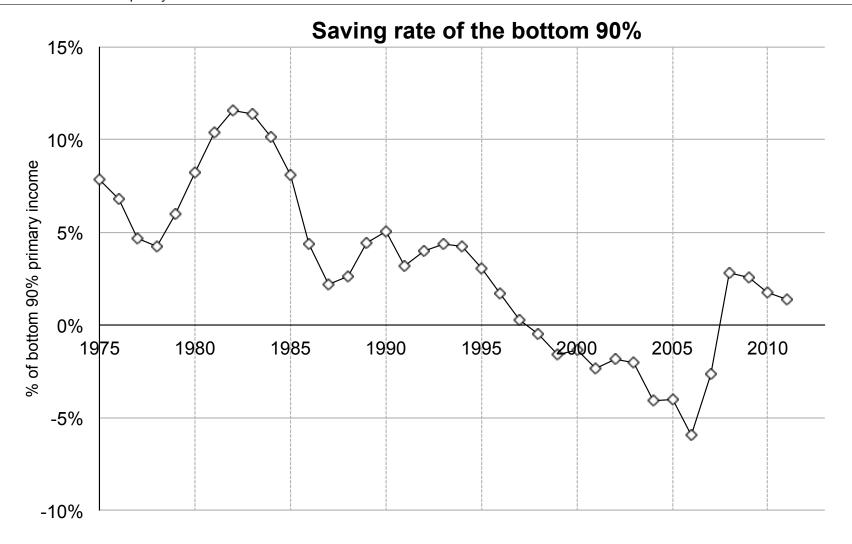
ullet As one gets richer, less need to insure against labor income risk o model predicts that saving rate falls with income

Not consistent with the data



The rich save more as a fraction of their income, except in the 1930s when there was large dissaving through corporations. NB: The average private saving rate has been 9.8% over 1913-2013.

Source: Saez and Zucman (2016)



Source: Saez and Zucman (2016)

2 Life-cycle saving models

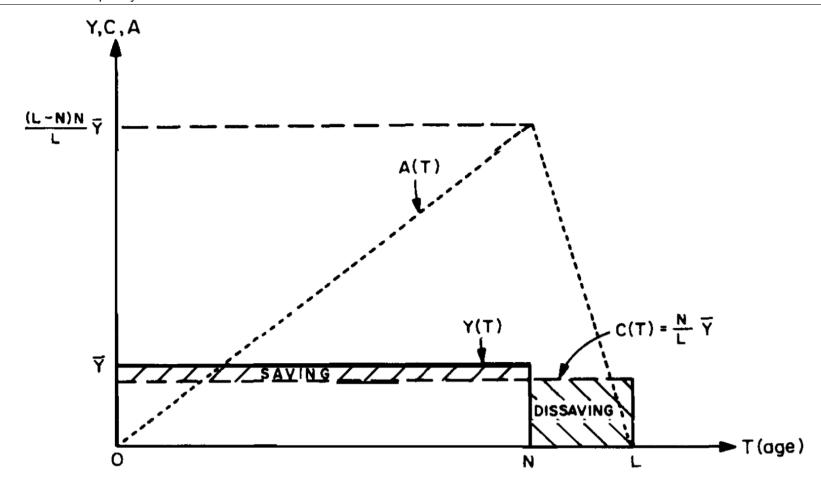
Main idea: people save to spread resources over the life-cycle

2.1 A simple life-cycle model

• Individuals die with 0 wealth, wealth accumulation entirely driven by need to save for retirement

• Assume that everybody starts working at age 0, works for N years, dies at age L, and that there is no growth (n = g = r = 0)

- \bullet Ex: N=60, L=70 o retirement length L-N=10 years
- \bullet Labor income is constant at \bar{Y} during working age period, then 0 during retirement
- ullet Everybody fully smoothes annual consumption so that C is always equal to average per capita output: $C=ar{Y}\cdot N/L$
- \bullet While working, people save $S = (1 N/L) \cdot \bar{Y}$
- ullet Then during retirement people dis-save $S=-N/L\cdot ar{Y}$



INCOME, CONSUMPTION, SAVING AND WEALTH AS A FUNCTION OF AGE

Source: Modigliani (1985)

2.2 The Modigliani triangle formula

Aggregate wealth/income ratio = half of retirement length

$$\frac{W}{Y} = \frac{1}{2} \cdot (L - N)$$

Proof:

2.3 Predictions of simple life-cycle model

• If retirement length L-N=10 years, then W/Y = $500\% \rightarrow$ model can generate large and reasonable wealth/income ratios

 Aggregate wealth/income ratio is independent of income level and solely depends on demographics

ullet Model can be extended to n>0, g>0, r>0

Consider an economy with n=g=r=0, N=60, L=70, and assume that between age 60 and 70, people work just as much as before 60. Then according to the Modigliani model, the aggregate wealth/income ratio will be:

$$A - 0\%$$

C — Indeterminate (can take any value)

$$D - 500\%$$

2.4 Limits of simple life-cycle model

ullet Social Security o reduces need to save for retirement

What fraction of aggregate wealth comes from life-cycle savers?
Modigliani vs. Kotlikoff-Summers controversey

 Main limit: life-cycle model generates too little wealth inequality: wealth inequality simply the mirror image of income inequality

3 Dynamic random shock models

3.1 Different types of shocks

Shocks to rates of return

Shocks to number of children

• Shocks to saving taste across generations

3.2 Sketch of a simple dynamic random shock model

Let's consider a model where random shock is a saving taste shock:

- Each period is a generation (30 years)
- ullet Each individual i receives same labor income $y_{Lti}=y_{Lt}$ in period t and has same annual rate of return $r_{ti}=r_t$
- Each agent chooses c_{ti} (life-time consumption) and w_{t+1i} (bequest left to children) so as to maximize a utility function

$$U(c_{ti}, w_{ti}) = c_{ti}^{1 - s_{ti}} w_{ti}^{s_{ti}}$$

 \bullet where s_{ti} : bequest taste parameter

• Budget constraint: $c_{ti} + w_{t+1i} \leq y_{Lt} + (1 + r_t) \cdot w_{ti}$

- ullet Random shocks come from idiosyncratic variations in the saving taste parameter s_{ti}
- ullet s_{ti} drawn from some random process with mean $s=E(s_{ti})<1$

Theorem: under a certain number of assumptions, wealth converges to a steady-state distribution that has the following properties:

- It follows a Pareto law at the top
- ullet The Pareto exponent a depends on taste shocks s_{ti}
- ullet The higher the variance of shocks, the lower a
- ullet $a \to 1$ (and thus wealth inequality tends to infinity) if the variance of shocks goes to infinity, and $a \to \infty$ if the variance goes to zero

A realistic theory of the wealth distribution has the following property:

- A Wealth inequality rises forever
- B Wealth is more unequally distributed than labor income
- C People mostly save for retirement
- D People mostly save to insure themselves against unemployment risk

4 Summary

 There are different saving motives: precautionary, life-cycle, bequest

 Life-cycle and precautionary saving alone cannot explain the level of wealth concentration

Wealth is very concentrated because of dynamic, random shocks

References

Modigliani, Franco, "Life Cycle, Individual Thrift and the Wealth of Nations", Nobel lecture, 1985, (web)

Piketty, Thomas, and Gabriel Zucman, "Wealth and Inheritance in the Long-Run", *Handbook of Income Distribution 2*, 2015 (web)

Saez, Emmanuel, and Gabriel Zucman, "Wealth Inequality in the United States since 1913: Evidence from Capitalized Income Tax Returns", *Quarterly Journal of Economics*, 2016 (web)